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Abstract 
 
Internet worms remain one of the major threats to the Internet infrastructure. Modeling allows forecasting the malware 
propagation consequences and evolution trends, planning countermeasures and many other tasks that cannot be 
investigated without harm to production systems in the wild. Existing malware propagation models mainly concentrate 
on malware epidemic consequences modeling, i.e. forecasting the number of infected computers, simulating malware 
behavior or economic propagation aspects and are based only on current malware propagation strategies. Significant 
research has been done in the world during the last years to fight the Internet worms. In this article we propose the 
extension to our genetic algorithm based model, which aims at Internet worm propagation strategies modeling under 
pressure of countermeasures. Genetic algorithm is selected as a modeling tool taking into consideration the efficiency of 
this method while solving optimization and modeling problems with large solution space. The main application of the 
proposed model is a countermeasures planning in advance and computer network design optimization 
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1. Introduction 
 
The number of malware in the wild is constantly increasing 
[1]. Despite the significant shift in motivation for malicious 
activity that has taken place over the past several years: from 
vandalism and recognition in the hacker community, to 
attacks and intrusions for financial gain which has been 
marked by a growing sophistication in the tools and methods 
used to conduct attacks, thereby escalating the network 
security arms race [2] and leading to domination of botnets 
in the current malware landscape [3] internet worms remain 
among the most significant threats to the Internet 
infrastructure. According to [4] they cover approximately 
14% of the current malware landscape and [1] notices that 
the most widely reported new malicious code family in 2008 
was the Invadesys worm, and 4 other worms took their 
places in Top10 of new malicious code families. The recent 
outbreak of the Conficker worm [5] shows that the worm 
problem remains relevant and requires further analysis. 
 Worms are network viruses, primarily replicating on 
networks. Usually a worm will execute itself automatically 
on a remote machine without any extra help from a user. 
However, there are worms, such as mailer or mass-mailer 
worms, that will not always automatically execute 
themselves without the help of a user [6]. In this article we 
analyze and model Internet worm propagation strategies, 
since their replication mechanisms differ significantly from 
mailer and mass-mailer worms [7]. Propagation strategy is 

one of the most descriptive malware characteristics [8]. 
Propagation of most worms is rapid (compared with 
classical computer viruses) and aggressive. Worms such as 
CodeRed and Nimda have been persistent for longer than 8 
months since their introduction date. As worms spread 
through nearly all networks, they find nearly all of the 
weakest hosts accessible and begin their lifecycle anew on 
these systems. This then gives worms a broad base of 
installation from which to act [9]. The main issues faced in 
worm evaluation include the scale and propagation of the 
infections [9]. Modeling allows Internet worm researchers to 
predict damage for a new worm threat [10], understand the 
behavior of malware, including spreading characteristics 
[11], understand the factors affecting the malware spread, 
determine the required effectiveness of countermeasures in 
order to control the spread and facilitate network designs 
that are resilient to malware attacks [12], predict the failures 
of the global network infrastructure [13]. Since significant 
research has been done in the world during the last years to 
fight the Internet worms the worm evolution has a tendency 
to changes. Our proposed model [7] extension allows 
modeling the Internet worms’ propagation strategies 
evolution under the pressure of countermeasures. Genetic 
algorithm [14] was selected as a modeling tool since it 
simulates natural selection by means of repeatedly evolving 
population of solutions (malware propagation strategies in 
our case) and therefore may be used for predicting and 
modeling possible future propagation strategies. Genetic 
algorithm modeling has been proved to be effective in many 
areas such as business decision making, bioinformatics and 
other [15-18]. 
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2. Current worm propagation strategies 
 
We define the Internet worms propagation strategy as a 
combination of methods and techniques, used by the worm 
to achieve tasks assigned to it by the worm creator. So the 
strategy suitable to achieve one specific task (e.g., creating 
the botnet) may be not useful for another (e.g., disrupting 
Internet functioning). Modern worms are usually created on 
a modular basis and may contain all or some of the 
following parts [9]: a reconnaissance module, that scans the 
Internet for vulnerable hosts; an attack module, that may 
exploit from one to many known vulnerabilities at 
potentially vulnerable host; a communication module that 
allows worms to communicate between themselves or to 
transfer information to the worm management center; a 
command module, that allows to accept commands; and an 
intelligence module, that insures functioning of the 
communication module, since it contains information how to 
find a neighbor worm for communication. Specific methods 
used in each of the modules are called patterns and a strategy 
can be also defined as a combination of patterns. A strategy 
is also dependent on worm introduction techniques, i.e. 
method used to release worm to the wild, connection 
protocol used (e.g. Transmission Control Protocol (TCP) or 
User Datagram Protocol (UDP)), etc. Since the number of 
existing and historic worms is high, we will describe only 
two propagation strategies used by CodeRed and Ramen, 
since they represent two different attitudes in complexity, 
vulnerable platform and functionality and can provide an 
understanding of strategies used in the wild. 
 On June 18th 2001 a serious Windows IIS vulnerability 
was discovered. On July 13th 2001 Code Red worm version 
1 that exploited this single vulnerability was released. Due to 
a code error in its random number generator, it did not 
propagate well. 10:00 UTC of July 19th Code Red version 2 
was released with the corrected random generator. It 
generated 100 threads. Each of the first 99 threads randomly 
chose one IP address and tried to set up connection on port 
80 with the target machine (if the system was an English 
Windows 2000 system, the 100th worm thread would deface 
the infected system’s web site, otherwise the thread was 
used to infect other systems, too) [10]. The worm was 
programmed to scan hosts in /8 with a 50% probability, /16 
– with 37.5% probability and with 12.5% probability it 
would scan a totally random network [9]. Sub-networks 
127.0.0.0/8, loopback, 224.0.0.0/8, multicast were excluded 
[13]. If the connection was successful, the worm would send 
a copy of itself to the victim web server to compromise it 
and continue to find another web server. If the victim was 
not a web server or the connection could not be setup, the 
worm thread would randomly gene-rate another IP address 
to probe. The timeout of the Code Red connection request 
was programmed to be 21 seconds. Netcraft web server 
survey showed that there were about 6 million Windows IIS 
web servers at the end of June 2001 [10]. More than 350.000 
of them were infected in several hours [19]. 
 The Ramen worm appeared in January 2001. Ramen 
attacked RedHat Linux 6.0, 6.1, 6.2, and 7.0 installations, 
taking advantage of the default installation and three known 
vulnerabilities: FTPd string format exploits against wu-ftpd 
2.6.0, RPC.statd Linux unformatted strings exploits, and 
LPR string format attacks. This vulnerable software could be 
installed on any Linux system, meaning the Ramen worm 
can affect other Linux systems, as well. The worm acted in 
the following way: defaced any Web sites it found; disabled 
anonymous FTP access to the system; disabled and removed 

the vulnerable rpc.statd and lpd daemons, and ensured the 
worm would be unable to attack the host again; installed a 
Web server on TCP port 27374, used to pass the worm 
payload to the child infections; removed any host access 
restrictions and ensured that the worm software would start 
at boot time; notified the owner (worm creator) of two e-
mail accounts of the presence of the worm infection. Worm 
then began scanning for new victim hosts by generating 
random class B (/16) address blocks (scans were restricted 
from 128/8 to 224/8, the most heavily used section of the 
Internet). Web server acted as a small command interface 
with a very limited set of possible actions. The mailboxes 
served as the intelligence database, containing information 
about the nodes on the network. This allowed the owners of 
the database to be able to contact infected systems and 
operate them as needed [9]. 
 
 
3. Prior and related work 
 
3.1 Epidemiological models 
 
The first epidemiological model of computer virus 
propagation was proposed by [20]. Epidemiological models 
abstract from the individuals, and consider them units of a 
population. Each unit can only belong to a limited number of 
states. A SIR model assumes the Susceptible-Infected-
Recovered state chain and SIS model – the Susceptible-
Infected-Susceptible chain. Sheila et al. in [21] use the 
epidemiological model as a basis for botnet modeling. The 
model is modified from the general model based upon the 
type of infection, transfer modality, and potential for re-
infection and can be represented as a M-S-E-I-R chain, 
where M is the class of computers (hardware or software) 
who are not infected with malware that can be exploited to 
enable bot infestation; S is used to represent the class of 
computers that are infected during manufacture with 
malware that can be exploited to enable bot infestation. E is 
the set of computers that have been infected, are not 
transmitting the infection, and in whom the infection has not 
been detected; I is the set of computers that have been 
infected, are transmitting the infection, and in whom the 
infection has not been detected; R is the set of computers 
that have been infected, whose infection has been detected, 
and that have had their bot removed. 
 In a technical report [22] Zou et al. described a model of 
e-mail worm propagation. The authors model the Internet e-
mail service as an undirected graph of relationship between 
people. In order to build a simulation of this graph, they 
assume that each node degree is distributed on a power-law 
probability function.  
 
 
3.2 Economic models 
 
Lelarge in [23] introduces an economic approach to malware 
epidemic modeling (including botnets). He states that users 
and computers on the network face epidemic risks. Epidemic 
risks (propagating viruses and worms in this case) are risks 
that depend on the behavior of other entities (externalities) in 
the network. The model based on graph theory quantifies the 
impact of such externalities on the investment in security 
features in a network. Each agent (user) can decide whether 
or not to invest some amount to self-protect and deploy 
security solutions that decrease the probability of contagion. 
When an agent self-protects, it benefits not only to those 

  44



N. Goranin and A.Cenys/ Journal of Engineering Science and Technology Review 2 (1) (2009) 43-47 
 
who are protected but also to the whole network. If all 
agents invest in self-protection, then the general security 
level of the network is very high since the probability of loss 
is zero. But a self-interested agent would not continue to pay 
for self-protection since it incurs a cost c for preventing only 
direct losses that have very low probabilities. When the 
general security level of the network is high, there is no 
incentive for investing in self-protection. This results in an 
under-protected network. 
 Li et al. [24] model botnet-related cyber-crimes as a 
result of profit-maximizing decision-making from the 
perspectives of both botnet masters and renters/attackers. 
From this economic model, they derive the effective rental 
size and the optimal botnet size. Fultz in [25] describes 
distributed attacks organized with the help of botnets as 
economic security games. 
 
 
3.3 Internet worm-oriented models 
 
The Random Constant Spread (RCS) model [19] was 
developed by Staniford et al. using empirical data derived 
from the outbreak of the CodeRed worm. It assumes that the 
worm has a good random number generator that is properly 
seeded. The model assumes that a machine cannot be 
compromised multiple times and operates several variables: 
K is the constant average compromise rate, which is 
dependant on worm processor speed, network bandwidth 
and location of the infected host; a(t) is the proportion of 
vulnerable machines which have been compromised at the 
instant t, Na(t) is the number of infected hosts, each of which 
scans other vulnerable machines at a rate K per unit of time. 
But since a portion a(t) of the vulnerable machines is already 
infected, only K(1-a(t)) new infections will be generated by 
each infected host, per unit of time. The number n of 
machines that will be compromised in the interval of time dt 
(in which a is assumed to be constant) is thus given by: 
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 N is assumed to be a large constant address space so the 
chance that worm would hit the already infected host is 
negligible. From this hypothesis: 
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 So the model can predict the number of infected hosts at 
time t if K is known. The higher is K, the quicker the 
satiation phase will be achieved by worm. As [9] states, that 

although more complicated models can be derived, most 
network worms will follow this trend.  
 Other authors [26] propose the discrete time model 
(AAWP), in the hope to better capture the discrete time 
behavior of a worm. However, according to [13] continuous 
model is appropriate for large-scale models, and the 
epidemiological literature is clear in this direction. The 
assumptions on which the AAWP model is based are not 
completely correct, but it is enough to note that the benefits 
of using a discrete time model seem to be very limited.  
 On the other hand Zanero et al in [13] propose a 
sophisticated compartment based model, which treats 
Internet as the interconnection of autonomous systems, i.e. 
sub-networks. Interconnections are a so-called 
“bottlenecks”. The model assumes, that inside a single 
autonomous system (or inside a densely connected region of 
an AS) the worm propagates unhindered, following the RCS 
model. The authors motivate the necessity of their model via 
the fact that the network limited worm Saphire which was 
using UDP protocol for propagation was following the RCS 
model till the “bottlenecks” were flooded by its scans.  
 Zou et al in [27] propose a two-factor propagation 
model, which is more precise in modeling the satiation phase 
taking into attention the human countermeasures and the 
decreased scan and infection rate due to the large amount of 
scan-traffic. The same authors have also published an article 
on modeling worm propagation under dynamic quarantine 
defense [28] and evaluated the effectiveness of several 
existing and perspective worm propagation strategies [29]. 
 
 
3.4 Other malware-oriented models 
 
Malware propagation in Gnutella type Peer-to-Peer (P2P) 
networks was described in [12] by Ramachandran et al. The 
study revealed that the existing bound on the spectral radius 
governing the possibility of an epidemic outbreak needs to 
be revised in the context of a P2P network. An analytical 
model that emulates the mechanics of a decentralized 
Gnutella type of peer network was formulated and the study 
of malware spread on such networks was performed. 
 Ruitenbeek in [30] simulates virus propagation using 
parameterized stochastic models of a network of mobile 
phones, created with the help of Mobius tool and provides 
insight into the relative effectiveness of each response 
mechanism. Two models of the propagation of mobile phone 
viruses were designed to study the impact of viruses on the 
dependability and security of mobile phones: the first model 
quantifies the propagation of multimedia messaging system 
(MMS) viruses and the second - of Bluetooth viruses. 
 In their presentation Zou et al. [31] suggest using botnet 
propagation model via vulnerability exploitation and notice 
some similarities of bot and worm propagation.We can not 
aggree with this statement since botnets use more 
propagation vectors than worms do. Botnet propagation 
modeling using time zones was proposed by Dagon et al. 
[32]. The model uses diurnal shaping functions to capture 
regional variations in online vulnerable populations.  
 Authors of [33] have developed a stochastic model of 
P2P botnet formation to provide insight on possible defense 
tactics and examine how different factors impact the growth 
of the botnet.  
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3.5 GA based models 
 
In [7] we proposed the genetic algorithm based model, 
which was dedicated to evaluating existing as well as 
modeling other potentially dangerous Internet worms’ 
propagation strategies at initial propagation phase. The 
efficiency of strategies was evaluated by applying the 
proposed fitness function. The proposed model was tested on 
existing worms’ propagation strategies with known infection 
probabilities. The tests have proved the effectiveness of the 
model in evaluating propagation rates and have shown the 
tendencies of worm evolution. We have also proposed the 
genetic algorithm (GA) based propagation rate estimation 
model [8] which evaluated the negative (decrease) change of 
population size after satiation phase of a newly appearing 
worms by generating a decision tree based on a statistical 
data of known worms. 
 
 
4. Extensions to the GA based Internet worm 
propagation strategy modeling framework 
 
4.1 General model description 
 
Since the full model description would require too much 
space and is available in [7] here we provide only the 
general model description. The model consists of a 
propagation strategy representation structure (each strategy 
is represented as a chromosome), GA acting under specified 
conditions and a fitness function, which evaluates the 
strategy’s infection rate at the initial propagation phase, 
leaning on probability and time consumption estimations of 
strategy’s used methods. We have chosen to model strategies 
for a theoretical Internet worm, which aims infecting the 
largest amount of hosts during a fixed relatively short period 
of time. Model is based on the adopted GA: during the 
initialization stage initial population of strategies is 
generated. At selection stage strategies are selected through 
a fitness-based process and in case termination condition is 
not met evolutionary mechanisms are started. In case 
termination condition is reached, algorithm execution is 
ended. 
 Initial population is generated on a random basis, i.e. 
each individual, representing separate worm propagation 
strategy is combined of random genes’ values. Population 
size N is equal to 50. Population size remains constant after 
each new generation. The combined termination condition 
was selected. The algorithm would stop producing new 
generations in two cases: either the number of generations 
has reached 100, or the fitness evaluation of the fittest 
individual in a population remains constant for 10 
consecutive generations. The crossover point for each pair of 
parents is selected randomly and defines the gene, after 
which the crossover operation is performed. The mutation 
operator defines the gene of a newly generated individual 
that should change value from current to any other random 
value from the range of possible gene values. Mutation 
operator is activated to each newly generated individual with 
a 0.005 probability. Fitness proportionate selection was 
used. The sample generated strategy may look like: 

 
Si=(IP_GEN="Random, excluding 127.0.0.0/8, loopback, 
224.0.0.0/8, multicast"; OS_PLATF="Apple OS"; 
TRANSF="Connection oriented"; EXPL_1=" CVE-2007-
3876"*; EN_EXPL_2="False"; EN_EXPL_3="False"; 
EN_EXPL_4="False"; EN_EXPL_5="True"; 

EN_EXPL_6="False"; EN_EXPL_7="False"; 
EN_EXPL_8="False"; EXPL_2="-"; EXPL_3="-"; 
EXPL_4="-"; EXPL_5=" CVE-2004-0485"**; EXPL_6="-
"; EXPL_7="-"; EXPL_8="-"; EN_MEM="False"; 
MEM="-"; EN_HIER="True"; HIER="Autonomous"; 
EN_COM="False"; COM="-"; EN_EXEC="True"; 
EXEC="Update functionality"; EN_ADD="True"; 
ADD="Write to MBR to remain after reboot"; 
EN_EVOL="False"; EVOL="-"). 
 
 The proposed model provides a general framework for 
evaluating different worms’ propagation strategy 
parameters. The proposed model was tested on existing 
worms’ propagation strategies with known infection 
probabilities and was used for forecasting Internet worm 
propagation strategy evolution in case no countermeasures 
are taken. 
 
 
4.2 Model extensions 
 
In order to evaluate countermeasures efficiency on worm 
propagation it is necessary to classify them. In this article we 
use the countermeasures taxonomy proposed by Brumley et 
al. in [34]. The fitness function used in our previous model 
[7] which does not evaluated the efficiency of 
countermeasures was written as 
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where: S – evaluated strategy; p1 – probability that the 
generated IP address exists and alive, p2 – probability that 
host is running the OS platform that the worm supports, p3 – 
probability that worm will be successfully transferred to the 
potential victim, pi – probability that the ith gene will result 
in an infected host, i=4..30; k – the number of cycles the 
worm, using the evaluated strategy, can perform in one 
second time interval. 
 The taxonomy [34] contains several countermeasure 
types: Reactive Antibody Defense (signatures, patching after 
worm break-out); Reactive Address Blacklisting (blocking 
the the connections from known infected hosts); Proactive 
Protection (universal system hardening based on worm 
disorientation); Local Containment ("good neighbor" 
blocking the outgoing worm scans if infected). We do not 
evaluate the technical problems related with the deployment 
of each countermeasure type, but it is obvious that their 
deployment is time dependant, since it takes time to prepare 
signatures, disseminate and constantly update blacklist, etc. 
It is also unarguable that worm spread becomes time 
dependant and the rate will decrease not when satiation 
phase is reached but much earlier. In that case Eq.6 can be 
rewritten as  
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 Variable p2 is not time-dependant since we assume that 
the number of computers running the OS is constant 
(negligible percent of users will change OS for example 
from Windows to Linux or vice versa in case a new worm 
appears) and the disorientation measures will effect in 
exploit efficiency. Each p(t) can be described as a curve 
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which shows the decrease of probability. In real life all 
countermeasures would be used in combination. Due to that 
fact the function p(t) representing the probability decrease in 
time would be an approximation of the real statistical data. 
Currently no such data is available and systematic data 
collection is needed in order to create such curves.  
 Eq.7 could be used to draw the curve of a specific worm 
propagation strategy that would be decreasing in time. In 
order to compare efficiency of different strategies under 
pressure of countermeasures we propose the new fitness 
function: 
 

dt
tdF

F s
SC

)(
=              (8) 

 
which is equal to time derivative of FS. Derivative shows the 
strategy’s efficiency decrease rate. The lower is decrease the 
more efficient the strategy is.  
 All other model assumptions and limitations do not 
change. We could not check the efficiency of the proposed 
model extension due to the lack of statistical data but the 
framework proposed allows modeling of Internet worm 
evolution under pressure of countermeasures. It is also 
important to note that different countermeasure proportions 

may lead to different probability curves and worm strategy 
evolution. The future work should be concentrated on the 
collection of statistical data and its modeling.  
 
 
5. Conclusions 
 
In this article we have proposed the extension to our genetic 
algorithm based model, which aims at Internet worm 
propagation strategies modeling under pressure of 
countermeasures. Extension is based on assumption that 
probability of infection is time-dependant and is decreasing 
over time when countermeasures are being deployed. The 
proposed fitness function selects the evolving strategies by 
evaluating the decrease rate of their efficiency. Due to the 
lack of statistical data we can not forecast what combination 
of countermeasures would be the most effective in each case 
and future work should be concentrated on the collection of 
statistical data and its modeling.  
 The proposed model can be used as a framework in 
computer network design optimization. Genetic algorithm is 
selected as a modeling tool taking into consideration the 
efficiency of this method while solving optimization and 
modeling problems with large solution space. 
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